
Symmetries of the discrete Burgers equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 2685

(http://iopscience.iop.org/0305-4470/32/14/009)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 2685–2695. Printed in the UK PII: S0305-4470(99)98423-8

Symmetries of the discrete Burgers equation

R Herńandez Heredero†‖, D Levi‡¶ and P Winternitz§+
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Abstract. A discrete Cole–Hopf transformation is used to derive a discrete Burgers equation that
is linearizable to a discrete heat equation. A five-dimensional symmetry algebra is obtained that
reduces to the Lie point symmetry algebra of the usual Burgers equation, in the continuous limit.
This Lie algebra is used to obtain explicit invariant solutions.

1. Introduction

The purpose of this paper is to study a discrete Burgers equation that shares the integrability
properties and point symmetries of the continuous Burgers equation.

The Burgers equation [1] is of considerable physical and mathematical interest. On one
hand it is widely applicable in hydrodynamics and other areas, since it is the simplest partial
differential equation that combines a description of nonlinear effects with that of dissipative
ones.

From a mathematical point of view it is the prototype of an equation that is linearizable
via a direct coordinate transformation. Indeed, the standard form of the Burgers equation is

ut = uxx + 2uux. (1.1)

Putting

u = vx (1.2)

we obtain the potential form of the Burgers equation, namely

vt = vxx + v2
x. (1.3)

Finally, setting

w = ev (1.4)

we obtain the linear heat equation forw, namely

wt = wxx. (1.5)
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In other words, the standard Burgers equation is transformed into the heat equation by the
Cole–Hopf transformation

u = wx

w
. (1.6)

The potential Burgers equation (1.3) has an infinite-dimensional Lie algebra of point
symmetries that is ‘inherited’ from the linear heat equation [2]. That of the Burgers
equation (1.1) is five-dimensional. They both have infinitely many higher symmetries, and
allow Bäcklund transformations. Moreover, it is possible to view the linear system

wt = wxx
wx = uw

(1.7)

as a Lax pair for the Burgers equation, i.e. equation (1.1) is the compatibility condition for pair
(1.7).

Indeed, we can rewrite equation (1.7) as a standard linear system

wt = Aw wx = Bw A ≡ ux + u2 B ≡ u. (1.8)

The Burgers equation is then formally written as a commutator relation, namely

Ax − Bt + [A,B] = 0. (1.9)

For the continuous Burgers equation (1.1) this is of little interest. In particular, the Bäcklund
transformation that can be obtained from the Lax pair (1.8) is trivial. We shall see below that
this is no longer the case for the discrete Burgers equation that we obtain in section 2.

Our aim is to provide a difference equation in two variablesx and t that goes into the
standard Burgers equation in the continuous limit and has all of the above properties when
considered as a difference equation.

We start out from the discrete linear system consisting of the discrete heat equation and a
discrete Cole–Hopf transformation. From it we obtain the required discrete equation foru(x, t)

as a compatibility condition.
We then use the known symmetries of the discrete heat equation [3,4] to derive symmetries

of the discrete Burgers equation. The symmetries appear as compatible flows. In the discrete
case they do not really correspond to point transformations, since they act simultaneously
at more than one point of the lattice. In the continuous limit they go into the known point
symmetries of the Burgers equation.

This article is part of a research direction devoted to symmetries of difference equations
[4–18]. It is not difficult to discretize linear differential equations while preserving their Lie
point symmetries, realized by difference operators, rather than by continuous vector fields [3,4].
The same cannot be said for nonlinear difference equations. The fact that the Burgers equation is
both interesting and linearizable turns it into a most suitable tool for investigating symmetries
of nonlinear difference equations. Furthermore, it can serve as a prototype for calculating
symmetries of integrable difference equations.

The motivation for obtaining symmetry preserving discretizations of differential equations
was discussed elsewhere [4–18]. Symmetries provide explicit particular solutions that can be
used to test numerical procedures. They provide conservation laws that can be used to test
the convergence and stability of numerical algorithms. The hope is that symmetry preserving
discretizations will also have direct computational advantages, though this still remains to be
confirmed.
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2. Derivation of the discrete Burgers equation

2.1. Notations

We shall use the same conventions and notations as in [4]. Thus, the dependent functions
φ(x, t) andu(x, t) will be continuous functions of continuous variables. The independent
variables,x andt , while also continuous will be ‘sampled’ at discrete points. Thus, we shall
consider a two-dimensional rectangular lattice with spacingsσx andσt in thex andt directions,
respectively. Instead of derivatives, equations will involve variations, or ‘discrete derivatives’
1x and1t , and shift operatorsTx andTt . The corresponding definitions are

Txf (x, t) = f (x + σx, t) Ttf (x, t) = f (x, t + σt ) (2.1)

1x = 1

σx
(Tx − 1) 1t = 1

σt
(Tt − 1). (2.2)

The three quantities1,T andσ are not independent, as seen from equation (2.2). We sometimes
find convenient to use all three of them in the same formula, but it must be kept in mind
that formulae can be reshuffled using equation (2.2). Higher discrete derivatives are defined
recursively.

2.2. The discrete Burgers equation as a compatibility condition

As stated in the introduction, we first write a discrete linear system, namely

1tφ = 1xxφ (2.3)

1xφ = uφ (2.4)

consisting of the discrete heat equation and the discrete Cole–Hopf transformation, relating
the functionsφ(x, t) andu(x, t). As in the continuous case, we can interpret equations (2.3)
and (2.4) as a Lax pair and if necessary, rewrite it in commutator form.

We first use equation (2.4) to rewrite (2.3) as

1tφ = [1xu + uTxu]φ. (2.5)

We then require the compatibility of (2.4) and (2.5), i.e.1t1xφ = 1x1tφ and obtain a
condition onu(x, t), which we shall call the ‘discrete Burgers equation’:

1tu = 1 +σxu

1 +σt [1xu + uTxu]
1x(1xu + uTxu). (2.6)

Equation (2.6) can be rewritten in many different forms, for instance we can use equation (2.2)
to eliminate all discrete derivatives in terms of shift operatorsT and spacingsσ .

The continuous limit of all the discrete equations is obtained by takingσx → 0, σt → 0.
We have

1t → ∂

∂t
Tt → 1 σt → 0 (2.7)

and similarly for1x , Tx andσx . In the continuous limit equation (2.6) goes into the usual
Burgers equation in the form (1.1).

We mention that a related discrete Burgers equation appeared in a different context in [19],
and that an ‘ultradiscrete’ version of it found an application to traffic flow modelling in [20].
A semidiscrete Burgers equation (with continuous timet) was also introduced earlier and its
integrability was analysed [21]. It can be re-obtained here by taking the limitσt → 0 for σx
fixed,σx 6= 0. Using the Lax equation (2.4) we can derive a Bäcklund transformation for the
discrete Burgers equation, in the same way as was done in the semidiscrete case [21]. The
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Bäcklund transformation relates a solutionu(x, t) of equation (2.6) to a new solutioñu(x, t)
of the same equation:

ũ = pu + (Txu)(1 +σxu)

p + 1 +σxu
(2.8)

wherep is an arbitrary constant.

3. Symmetries of the discrete Burgers equation

3.1. General procedure

To obtain the symmetries of the discrete Burgers equation we proceed with the same strategy
as used for deriving the equation itself. We start from the symmetries of the discrete heat
equation [3,4], require their compatibility with the Cole–Hopf transformation (2.4) and express
the result in terms of the functionu(x, t).

As in [4] we make use of an evolutionary formalism for difference equations. The
symmetry algebra for a difference equation involving one dependent variable and two
independent variables (x andt) will be realized by vector fields of the form

Xe = Q(x, t, T ax T bt u, T cx T dt 1xu, T
e
x T

f
t 1tu, . . .)∂u (3.1)

whereT ax T
b
t indicates that arbitrary shifts inx and t may be present. The functionQ can

depend explicitly onσx andσt in an analytical way. For linear difference equations a rather
restrictive ansatz on the form of the functionQ provides symmetries that reproduce all point
symmetries in the continuous limit. The ansatz is [4]:

Q =
∑
c,d

ξ(x, t)T cx T
d
t 1xu +

∑
e,f

τ (x, t)T ex T
f
t 1tu−

∑
a,b

ψ(x, t)T ax T
b
t u (3.2)

whereξ , τ andψ can depend explicitly and analytically onσx andσt .
Each element of the symmetry algebra provides a flow that is compatible with the studied

equation, namely

uλ = Q (3.3)

whereλ is a group parameter that can also be viewed as a new ‘time’. Thus, both for
differential and difference equations the existence of symmetries is tantamount to the existence
of commuting flows.

For the heat equation (2.1) the elements of the symmetry algebra have the form (3.2).
More specifically, an infinite-dimensional Lie algebra was obtained in [4], involving arbitrary
powers of shift operators. A six-dimensional subalgebra was identified that is isomorphic to the
symmetry algebra of the continuous heat equation. Both in the continuous and discrete case,
we factor out an infinite-dimensional ideal, corresponding to the linear superposition principle.
In terms of commuting flows (see equation (3.3)) we write a basis for this finite-dimensional
Lie algebra as

φλ1 = 1tφ (3.4)

φλ2 = 1xφ (3.5)

φλ3 = 2tT −1
t 1xφ + xT −1

x φ + 1
2σxT

−1
x φ (3.6)

φλ4 = 2tT −1
t 1tφ + xT −1

x 1xφ + (1− 1
2T
−1
x )φ (3.7)

φλ5 = t2T −2
t 1tφ + txT −1

t T −1
x 1xφ + 1

4x
2T −2
x φ + t (T −2

t − 1
2T
−1
t T −1

x )φ − 1
16σ

2
x T
−2
x φ (3.8)

φλ6 = φ. (3.9)
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In the continuous limit (3.4)–(3.9) go into the usual generators of time translations,
space translations, Galilei transformations, dilations, projective transformations and the
multiplication by a constant, respectively.

Each of these symmetries can be acted upon by arbitrary functions of the shift operators
f (Tx, Tt ), obtaining further symmetries. In the continuous limit we havef (Tx, Tt ) =
f (1, 1) = const, so all these ‘higher’ symmetries reduce to the six original ones forσx → 0,
σt → 0. Among these symmetries two are particularly relevant, namely

φλ = φt (3.10)

φλ = φx. (3.11)

These are the usualt andx translations, that can be obtained using the well known formula

φz =
∞∑
k=0

(−1)k

k + 1
(Tz − 1)k1zφ (3.12)

(with z = x, or z = t).

3.2. Symmetries and the Cole–Hopf transformation

All symmetries of the heat equation can be written symbolically as

φλ = Sφ (3.13)

whereS = S(x, t, φ, Tx, Tt ,1x,1t , ∂x, ∂t ) is a linear operator that can in each case be read
off from equations (3.4)–(3.11).

We use the Cole–Hopf transformation (2.4) to transform symmetries of the heat
equation (2.3) into those of the discrete Burgers equation (2.6). Let us first prove a general
result.

Theorem. Let equation (3.13) represent a symmetry of the discrete heat equation (2.3). Then
the same operatorS provides a symmetry of the discrete Burgers equation (2.6) via the formula

uλ = (1 +σxu)1x

(
Sφ
φ

)
(3.14)

whereSφ/φ can be (and must be) expressed entirely in terms ofu(x, t), its variations and
their shifted values.

Proof. Let us impose that the symmetry (3.13) and the Cole–Hopf transformation (2.4) be
compatible. Equality of cross derivatives

∂

∂λ
(1xφ) = 1xφλ (3.15)

implies

uλ = 1x(Sφ)− uSφ
φ

. (3.16)

On the other hand, a direct calculation yields

1x

(
Sφ
φ

)
= 1

σx

[
Tx(Sφ)
Txφ

− Sφ
φ

]
= 1

σx(Txφ)φ
{φ[Tx(Sφ)− Sφ] − [(Txφ)(Sφ)− φ(Sφ)]} (3.17)

1x

(
Sφ
φ

)
= 1

Txφ
[1x(Sφ)− u(Sφ)]. (3.18)
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Multiplying by σxu and using the Cole–Hopf transformation again we obtain

σxu1x

(
Sφ
φ

)
= 1x(Sφ)− u(Sφ)

φ
−1x

(
Sφ
φ

)
. (3.19)

Using (3.16), we replace the first term on the right-hand side of (3.19) byuλ, and obtain
equation (3.14).

In order to show that the fractionSφ/φ can be expressed in terms of the functionu, it
is sufficient to write1tφ, 1xφ, Txφ, Ttφ, T −1

x φ, etc, as expressions depending onu, times
φ (see equations (3.4)–(3.9)). The necessary formulae are obtained from equations (2.4) and
(2.5), namely

1xφ = φu 1tφ = φv
Txφ = φ(1 +σxu) Ttφ = φ(1 +σtv)

T −1
x φ = φT −1

x

1

1 +σxu
T −1
t φ = φT −1

t

1

1 +σtv

(3.20)

where we have introduced the notation

v = 1xu + uTxu. (3.21)

Applying the theorem to the one-dimensional subalgebrasφλ1, . . . , φλ6 of equations (3.4)–
(3.9), we obtain the corresponding symmetries of the discrete Burgers equation. A basis for
this Lie algebra is given by the following flows:

uλ1 = (1 +σtv)1tu (3.22)

uλ2 = (1 +σxu)1xu (3.23)

uλ3 = (1 +σxu)1x

[
2tT −1

t

u

1 +σtv
+

(
x +

1

2
σx

)
T −1
x

1

1 +σxu

]
(3.24)

uλ4 = (1 +σxu)1x

[
2tT −1

t

v

1 +σtv
+ xT −1

x

u

1 +σxu
− 1

2
T −1
x

1

1 +σxu

]
(3.25)

uλ5 = (1 +σxu)1x

[
t2T −1

t

(
1

1 +σtv
T −1
t

v

1 +σtv

)
+ txT −1

x

(
1

1 +σxu
T −1
t

u

1 +σtv

)
+

1

4

(
x2 − σ

2
x

4

)
T −1
x

(
1

1 +σxu
T −1
x

1

1 +σxu

)
+ tT −1

t

(
1

1 +σtv
T −1
t

1

1 +σtv

)
−1

2
tT −1
x

(
1

1 +σxu
T −1
t

1

1 +σtv

)]
(3.26)

uλ6 = 0. (3.27)

The quantityv is defined in equation (3.21).
Thus, the six-dimensional symmetry algebra of the discrete heat equation gives rise to a

five-dimensional symmetry algebra of the discrete Burgers equation. The same is true in the
continuous case.

The fact that the flows (3.22)–(3.26) commute with the flow of the discrete Burgers
equation (2.6) was also checked directly on a computer (using Mathematica).

In the continuous limit, equations (3.22)–(3.26) go over correctly into the well known
symmetries of the usual Burgers equation (1.1), namely time translations, space translations,
Galilei boosts, dilations and projective transformations. The commutation relations in the
discrete case are the same as in the continuous one.

We can show directly that the usual space and time translations are also symmetries of the
discrete Burgers equation:

uλt = ut (3.28)

uλx = ux. (3.29)
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Indeed, it is easy to check that the correspondingλ-flows commute with thet-flow given by
equation (2.6).

Further symmetries can be generated from other symmetries of the heat equation. Thus,
the symmetry (3.9) of the discrete heath equation does not provide a symmetry of the discrete
Burgers equation (see equation (3.27)). The ‘higher’ symmetries of the heat equation given
by φµ = T ax φ will give new symmetries. Indeed, we have for instance fora = −1

uµ = (1 +σxu)1x

(
T −1
x φ

φ

)
i.e.

uµ = (1 +σxu)T
−1
x 1x

(
1

1 +σxu

)
. (3.30)

In the continuous limit this symmetry goes intouµ = 0, i.e. it becomes trivial. �

4. Symmetry reduction for the discrete Burgers equation

4.1. General comments

For a partial differential equation, symmetry reduction is a means for decreasing the number
of independent variables in the equation. One way of viewing it is that one looks for fixed
points of theλ-flow corresponding to a certain symmetry. Thus we have the so-called surface
condition

uλ = Q(x, t, u, ux, ut , . . .) = 0. (4.1)
Equation (4.1) is to be solved in conjunction with the equation under consideration. Often
one can solve equation (4.1) directly, in particular using the method of characteristics, if it
is a first-order linear or quasilinear equation. The result is then substituted into the original
equation and this leads to a reduction. Alternatively, equation (4.1) can be used to eliminate all
t-derivatives (orx-derivatives) from the equation, thus reducing it to an ordinary differential
equation (with the other variable as a parameter).

Solutions obtained in this manner are called group invariant solutions [2]. They form a
very important class of explicit solutions of nonlinear partial differential equations.

If equation (4.1) is implemented, together with the partial differential equation to be
solved, the resulting system may have some further symmetries, inherited from the symmetry
algebraL of the original equation. More specifically, letXe = Q∂u be the corresponding
evolutionary vector field. The symmetries that will survive, once equation (4.1) is imposed,
form a subalgebraL0 ⊂ L, whereL0 is the normalizer algebra ofXe:

L0 = {Ye ⊂ L|[Ye,Xe] = λXe} λ ∈ R. (4.2)
Let us illustrate the situation using the continuous Burgers equation as an example. The
symmetry algebraL in the usual vector field formalism has a basis given by
P0 = ∂t P1 = ∂x B = t∂x − 1

2∂u D = 2t∂t + x∂x − u∂u
R = t2∂t + tx∂x − (tu + 1

2x)∂u.
(4.3)

From the commutation relations of these vector fields, we see thatL is a semidirect sum of
sl(2,R) and an abelian Lie algebra:

L ∼ {P0,D,R} +̇ {P1, B}. (4.4)
As an example let us look at the reductions of the continuous Burgers equation by time

translationsP0. Equation (4.1) in this case is simplyuλ = ut = 0. The Burgers equation (1.1)
reduces to the ordinary differential equation

uxx + 2uux = 0. (4.5)
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We obtain three types of solutions:

u = 1

x
u = k arctanh(kx) u = k arctan(kx) (4.6)

depending on whether the first integral of the reduced equation is zero, positive or negative.
The normalizer ofP0 in the invariance algebra is nor{P0} = {D,P1, P0}, so we can use

eitherD, or P1, to perform a further reduction of equation (4.5). A reduction byP1 leads to
the trivial solutionu = u0 = const. Invariance under dilations provides the first of the three
solutions in equation (4.6).

4.2. Symmetry reduction for the discrete Burgers equation

We have shown that all the symmetries of the discrete Burgers equation (2.6) can be written in
the form (3.14) withSφ/φ expressed in terms ofu. This allows us to write all the reduction
formulae in the form1x(Sφ/φ) = 0. Hence, we can in all cases integrate once and write the
reduction equations, (i.e. the surface condition) as

Sφ
φ
= K(t) (4.7)

and then rewrite equation (4.7) in terms ofu. In general,S is a linear combination of all
the symmetry operators for the heat equation, i.e. the operators on the right-hand sides of
equations (3.1)–(3.9). Instead of performing a general subalgebra analysis [22], we shall just
look at the individual basis elements of the Lie algebra.

4.2.1. Time translations. We rewrite (3.22) as

uλ1 = (1 +σxu)1x

(
1tφ

φ

)
. (4.8)

Equation (4.7) then is

1tφ = K(t)φ (4.9)

or in terms ofu:

v = 1xu + uTxu = K(t). (4.10)

The Burgers equation (2.6) can be written as

1tu = 1 +σxu

1 +σtv
1xv. (4.11)

Hence, in view of equation (4.10) we have

1tu = 0 K = K0 = const. (4.12)

Sinceφ satisfies the heat equation we rewrite equation (4.9) as

1xxφ = Kφ. (4.13)

This is a linear difference equation with constant coefficients, and we can easily solve it, putting
φ = ax and findinga.

ForK 6= 0 the general solution of equation (4.13) is

φ = c1(1 +
√
Kσx)

x/σx + c2(1−
√
Kσx)

x/σx (4.14)

wherec1 andc2 are arbitrary real constants forK > 0 and are complex, satisfyingc2 = c̄1 for
K < 0.

ForK = 0 the solution of equation (4.13) is

φ = c1 + c2x c1, c2 ∈ R. (4.15)
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In all cases the corresponding invariant solution of the discrete Burgers equation is obtained
via the Cole–Hopf transformation asu = 1xφ/φ. In particular equation (4.15) yields a
solutions invariant under dilations that can be written as

u = 1

x +µσx
µ = const. (4.16)

4.2.2. Space translations.In this case the result is trivial. From equation (3.23) we have
directly1xu = 0, from the discrete Burgers equation1tu = 0 and henceu = const.

4.2.3. Galilei invariance. SubstitutingS from equation (3.6) into (4.7) we obtain the
linearized reduced equation
2(t + σt )1xφ + (x + 1

2σx)T
−1
x φ + σt (x + 1

2σx)T
−1
x 1xxφ = K(t)(φ + σt1xxφ). (4.17)

In terms ofu the reduced equation is obtained from equation (3.20) and is
2tTxu + x −K(t) + 2tσxuTxu + σt ( 7

2Txu + 7
2σxuTxu + xuTxu + x1xu− 3

2u) + 3
2σx

−K(t)[σxu + σt (Tx1xu + uT 2
x u− uTxu) + TxuT

2
x u + σxuTxuT

2
x u] = 0.

(4.18)
These are difference equations in one variable (namelyx) only; t is a parameter. Equation (4.17)
is a linear second-order equation, but it has variable coefficients. Solving it is a nontrivial task
which we shall not attempt here.

The situation is similar for the dilations (3.7) and (3.25) and the projective transformation
corresponding to equations (3.8) and (3.26). We shall just present the reduced equations forφ

andu, the first being a linearization (via the discrete Cole–Hopf transformation) of the second.

4.2.4. Scaling invariance. The linearized reduced equation is
2(t + σt )1xxφ + xT −1

x (1xφ + σt1xxxφ) + (1− 1
2T
−1
x )(φ + σt1xxφ) = K(t)[φ + σt1xxφ].

(4.19)
The reduced equation foru is:
1
2 +K(t)− u[x + σx(2−K(t))− v1(2t − 3

2σt )] − u(Txv1)[2t + 4σxσt − xσt −K(t)σxσt ]
−(1xv1)(2t − xσt )− σt (u−K(t))Txv1 = 0. (4.20)

We have defined
vj+1 = 1xvj + uTxvj v0 = u v1 = v. (4.21)

4.2.5. Projective invariance. The linearized reduced equation forφ and the reduced equation
for u are, respectively
(t + 2σt )

21xxφ + (t + 2σt )xT
−1
x (1xφ + σt1xxxφ)

+( 1
4x

2 − 1
16σ

2
x )T

−2
x (φ + 2σt1xxφ + σ 2

t 1xxxxφ)

+(t + 2σt )[φ − 1
2T
−1
x (φ + σt1xxφ)]

= K(t)(φ + 2σt1xxφ + σ 2
t 1xxxxφ) (4.22)

and
(t + 2σt )

2(v1 + 2σxv2 + σ 2
x v3) + (t + 2σt )(x + σx)(u + σxv1 + σtv2 + σxσtv3)

+1
4[(x + 2σx)

2 − 1
4σ

2
x ](1 + 2σtv1 + σ 2

t v3) + (t + 2σt )

×( 1
2 + 3

2σxu + σ 2
x v1− 1

2σtv1− 1
2σxσtv2)

= K(t)(1 + 2σxu + σ 2
x v1 + 2σtv1 + 4σxσtv2 + 2σtσ

2
x v3 + σ 2

t v3

+2σ 2
t σxv4 + σ 2

t σ
2
x v5). (4.23)
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5. Conclusions

We have seen the example of the discrete Burgers equation that, conceptually, is quite similar to
the situation for differential ones regarding the treatment of symmetries of difference equations.
Thus, one can construct a Lie algebra of flows commuting with the original equation and write
down the corresponding evolutionary vector fields. Subalgebras of the symmetry algebra can
be put to good use. As we have shown, they provide reductions to difference equations with
fewer independent variables, in our example to ordinary difference equations. There are,
however, important technical differences. Some points that we wish to make are as follows.

(1) The symmetries that have Lie point symmetries as their continuous limits are not
necessarily point ones in the discrete case. Indeed, all the symmetries (3.4)–(3.8) of the
discrete heat equation involve the functionφ(x, t) at more than one point of the lattice.
The only exception is the symmetry (3.9). Similarly, none of the symmetries (3.22)–(3.26)
of the discrete Burgers equation involvesu(x, t) only (see equation (2.2)).

(2) We greatly profited from the linearizability of the nonlinear Burgers equation. Indeed,
the symmetries (3.22)–(3.26) were obtained using the discrete Cole–Hopf transformation,
applied to the heat equation and its symmetries. In principle these symmetries could be
obtained directly using the prolongation techniques introduced in an earlier article [4].
However, the general form (3.1) of the vector field must be used. The resulting formulae
(3.22)–(3.26) show that the determining equations are not easy to solve (even though they
are linear difference equations).

(3) All symmetries (3.22)–(3.26) involve shifts to a finite (and small) number of neighbouring
points on the lattice. The symmetries (3.28) and (3.29) involve infinitely many points (and
end up being ordinary continuous derivatives in one point).

(4) Each symmetry provides a reduction of the original equation to an ordinary difference
equation. The invariance conditions are, however, in general nonlinear higher-order
difference equations. They may be quite difficult to solve, even though they are (for
the Burgers equation) always linearizable.

(5) A ‘naive’ discretization of the Burgers equation would lead to the equation

1tu = 1xxu + 2u1xu (5.1)

rather than to equation (2.6). The naive discretization loses all the essential properties of
the Burgers equation: its linearizability and its symmetries. More generally, discretization
procedures are not unique and different linearizations may be preferable, depending on
what we want to preserve (linearizability, integrability, symmetries, conservation laws,
etc).

In short, Lie symmetry techniques are useful for difference equations, but the distinction
between point and higher symmetries becomes blurred. All the complications that arise in the
study of higher symmetries of differential equations must be addressed in the case of difference
ones.

Work is in progress on the extension of the present approach to other nonlinear, but
integrable equations. All soliton equations are, by definition, integrable via an inverse
scattering transform. There is always a Lax pair associated with such an equation. The
corresponding partial differential equation can be discretized together with its Lax pair. The
discrete Lax pair will then be used to obtain the symmetries of the obtained nonlinear difference
equation, in particular those symmetries that in the continuous limit reduce to point ones.
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